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DETERMINATION O F  STRESSES I N  ELASTIC SOLIDS USING 

“HIUCE STRESS FUNCTIONS AND TKEBE EQUATIONS 

By Robert E .  Reed, Jr . 
Ames Research Center 

SUMMARY 

The c l a s s i c a l  equations of e l a s t i c i t y  i n  terms of t h e  stress components 
a r e  reduced t o  a set of th ree  equations i n  terms of the  three  Maxwell s t r e s s  
functions and a r b i t r a r y  functions of integrat ion.  The sufficiency of these 
equations is  due t o  the  in te r re la t ionships  between the  six compatibil i ty equa- 
t i o n s .  The d i f f i c u l t y  i n  choosing t h e  a r b i t r a r y  functions t o  f i t  a par t icu lar  
problem accents t he  advantages of using the  inverse method t o  f ind  solut ions.  
A family of exact solutions is  presented fo r  s t r e s ses  i n  a rectangular so l id  
with cer ta in  applied s t r e s ses  on two opposite faces, workless boundary condi- 
t i ons  on two opposite faces,  and the  remaining two faces free of applied 
stress. 

LNTRODUCTION 

The d i f f e r e n t i a l  equations f o r  determining the  s t r e s ses  and displacements 
i n  a three-dimensional e l a s t i c  so l id  are well known (e.g. ,  refs. l -3) ,  but  
r e l a t ive ly  few exact solutions have been found. Primarily, two methods can be 
used t o  f ind these solut ions.  One method is  t o  choose displacements t h a t  
s a t i s f y  the  equilibrium equations and boundary conditions and the  other method 
i s  t o  choose s t r e s s  components tha t  s a t i s f y  the  equilibrium equations, bound- 
a ry  conditions, and compatibil i ty equations. The choice between these two 
methods w i l l  depend on the  quant i t ies  desired and the  type of boundary condi- 
t ions  present.  However, t h i s  report  w i l l  dea l  only with the  method of choos- 
ing the  stress components; and then it attempts t o  derive a simplified s e t  of 
equations from which exact solutions can be obtained. Basically,  the complete 
system of equations f o r  t he  s t r e s s  components consis ts  of 12 unknowns and 
15 equations. 
ponents. 
6 compatibil i ty equations i n  terms of t he  6 s t r a i n  components which are neces- 
sary and suf f ic ien t  t o  ensure the cont inui ty  of t he  displacements ( f o r  simply 
connected regions) of any so l id  undergoing deformation. 
reduced t o  6 equations and 3 unknowns by defining 3 stress functions t h a t  
ident ica l ly  s a t i s f y  t h e  equilibrium equations and then, with the  stress-strain 
re l a t ions ,  by introducing these stress functions in to  t h e  compatibil i ty equa- 
t i ons .  
t he  6 compatibil i ty equations are in t e r r e l a t ed  and t h a t ,  a t  most, 3 of t he  
6 a r e  unrelated equations. 
i b i l i t y  equations w i l l  have no equation r e l a t ed  t o  the  other 2, but  any group 

The unknowns are the  6 s t r e s s  components and the  6 s t r a i n  com- 
The equations consis t  of 3 equilibrium, 6 s t ress -s t ra in ,  and the  

This system can be 

However, it i s  pointed out i n  some references (e.g. ,  refs. 1-3) t h a t  

That is, cer ta in  groups containing 3 compat- 



of 4 or more equations w i l l  have 1 or more equations r e l a t ed  t o  the  other 
equations i n  the  group (see appendix A f o r  a discussion of t he  compatibil i ty 
equations). 
homogeneous, i so t ropic ,  and follows Hooke's l a w ,  make it possible t o  derive a 
s e t  of 3 equations i n  terms of 3 unknown s t r e s s  functions and some a r b i t r a r y  
functions of integrat ion.  These equations, along with the  boundary condi- 
t ions ,  are necessary and suf f ic ien t  f o r  determining exact solutions,  but t he  
a r b i t r a r y  functions of integrat ion must be chosen t o  s u i t  each par t icu lar  
problem. Exact solut ions of these equations are of ten d i f f i c u l t  where a par- 
t i c u l a r  problem i s  specif ied.  However, use of t h e  "inverse method," where the  
a r b i t r a r y  functions of integrat ion are chosen such t h a t  solutions can be found, 
w i l l  produce exact solut ions t o  problems which may be of immediate in t e re s t  i n  
terms of  spec i f ic  problems or can be used t o  check the  v a l i d i t y  of approximate 
solutions which a r e  based on formulations t h a t  can be used t o  solve a wider 
range of problems. 

These in te r re la t ionships ,  and the  as.sumption t h a t  t he  material  i s  

In the  following, t he  set of three equations i s  derived and an example 
solution i s  presented and discussed. This solut ion represents a rectangular 
so l id  with ce r t a in  combinations of shear and normal s t r e s s  applied t o  opposite 
faces while two other faces have workless boundary conditions and the  
remaining opposite faces a re  f r e e  of  applied s t r e s s .  

SYMBOLS 

A i  

a 

i 

LO 

constants of integrat ion 

dimension i n  x d i rec t ion  

constants of integrat ion 

dimension i n  y d i rec t ion  

e l a s t i c  modulus 

resu l tan t  applied forces 

functions of integrat ion 

a 
b 
- 

resu l tan t  applied moments 

functions of body forces 

functions of 6 

displacements i n  x,y,z d i rec t ions  

2 
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I 

R 

W dimensionless displacements; 

body forces 

rectangular coordinates 

constant parameters, 

shear strains 

normal strains 

functions of $1,q2,q3,P,Q, and R 

Poisson’s ratio 

dimensionless coordinates; 2 , 
normal stress components 

, E ., and - a 

2 
= y2 - P ~ L ~  

Z and - a b  a 

shear stress components 

Maxwell stress functions 

Subscripts 

imaginary part of a complex quantity 

real part of a complex quantity 

HOMOGENEOUS, ISOTROPIC, LII%FARLY ELASTIC MAmRIALS 

The equilibrium equations including the body forces are 

+ Y = O  + - + -  d‘yz 
ay ax a Z  

- do, 
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Hooke's l a w  is 

= - 1 [a, - v(ay + a,)] 
EX EI 

= - 1 [ay - v(ax + az)l 
'Y E 

- 2(1 + v )  - 2 ( 1  + v )  
7xY E Txy ? Y,, - E Txz ? 

- 

and the  compatibil i ty equations are 

aYxz a,,> 3, = O 
2 - - - ( 2 + - - -  a2 E, a a%y + - - -  a%, P Y Y Z  = o  

az2 ay2 ay a, ax ay aZ a Y  

The equilibrium equations can be s a t i s f i e d  by the Maxwell s t r e s s  func- 
t i ons  modified t o  account f o r  the  body forces .  
(e-),,, e t c . ,  one obtains 

Denoting a2( *.) /ax2 by 

. I 7 -  ax - $24, + b Y  - J X d x ,  

a =  Y %,zz + %,Xx 

= %,yy + +2,, - $ Z d z ,  

XY - -%$cy 

+2 ,xz 

T YZ = -%,p 

- 

- s  Y dy , Txz = - 

4 



Equations (4) can be subst i tuted in to  equations (2)  t o  give the  s t r a i n s  i n  
terms of the  stress functions. Equations (2)  can then be subst i tuted in to  the  
compatibil i ty equations t o  give s ix  equations in terms of the  three  unknowns 
q1, q2, and q,. For convenience, t he  following def in i t ions  are made: 

8 1  = VV2$, - v2q2 - v2q, + hljXx + $2,yy + 

R = s Z d z  - v X d x  + s  Y dy) ( 
and 

a2 a2 
(..) + -  ( . .)  + -  ( . . )  + ( . . )  = - a2 

a 3  a f  a 22 

Equations (3)  then become, respect ively (see appendix B f o r  d e t a i l s  of the  
derivation ) 

and 
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Equations (7)  can'be integrated t o  f ind  
must be r e s t r i c t e d  t o  s a t i s f y  equations (6 ) .  

01,  e,, and e,, but these solutions 
Therefore, equations (7)  yield 

( 8 )  I 01 = f l ( X , Y )  + g1(x,z) 

02 = f 2 b Y Y )  + h2(Y,Z) 

63 = ~ ~ ( X Y Z )  + ~ ~ ( Y Y z )  

and equations (6) require  t h a t  
'1 

f w Y  + f2,= = 0 

g1,zz + Q3,Xx 

h2 ,zz + h3,YY = o  =.1 
Equations (9) can be integrated t o  give 

(9)  

Substi tuting equations (10) in to  equations (8) gives 

'1 = -JJf2(x7Y)7,: dY dY Y f 3 ( X )  + gl(XyZ) + F(x)]  

Equations ( 5 )  can be used t o  write equations (11) i n  t e r m s  of the $ values. 
This gives the  three equations which, along with the  boundary conditions, 
form a necessary and suf f ic ien t  set f o r  determining e l a s t i c i t y  solut ions.  
These equations a re  

6 



-v2*, - v2v2 + w2q3 + (q,,xx + q2,yy + q3,zz + R  

where the  right-hand s ides  a re  a r b i t r a r y  functions of integration. Note tha t  
there  a re  no a r b i t r a r y  functions of t he  form f (x ,y ,z ) .  

Par t icu lar  solut ions can be found fo r  F(x), G(y),  H ( Z ) ,  and ; Y f s ( X ) >  
z& (y)  , xgq (z ) ;  they have t h e  form: 

The s t resses  resu l t ing  from these solutions a re  zero so  these functions can 
be disregarded. f2(x ,y) ,  g,(x,Z) , and h3(y,z) 
w i l l  y ie ld  nonzero s t r e s ses  which may be necessary t o  s a t i s f y  the  boundary 
conditions of a specif ied problem. 

However, t h e  solutions for  

COMMENTS ON POSSIBLE SOLUTIONS 

General Comments 

The relevant a r b i t r a r y  functions (f2,  g,, h3) i n  equations (12) can be 
expanded in to  appropriate double Fourier s e r i e s ,  and par t icu lar  solut ions can 

7 
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be found i n  terms of t he  constants of t he  series. These constants would be 
determined t o  f i t  a par t icu lar  problem. However, these functions and the  
body forces  w i l l  be taken t o  be zero and only 
be considered. These are 

-v2*, - v2q2 +vv2$3 + (qlyxx -!- 

Subtracting equations (13) i n  pa i r s  gives 

v2q1 = v'q2 

v2q1 = V 2 $ 3  

t he  homogeneous equations w i l l  

Therefore, any solut ion of equations (13) w i l l  s a t i s f y  equations (14).  
This gives some indication of t he  type of  solut ions one might choose. Another 
poss ib i l i t y  i s  t o  l e t  

Equations (13) then reduce t o  a s ingle  Laplace equation: 

From equations ( b ) ,  it i s  seen t h a t  solutions t o  equation (15) represent the  
case when the  f irst  s t r e s s  invariant (ax -!- ay + o z )  i s  zero 
form of solution t o  equation (15) is 
similar t o  a solution discussed i n  reference 4. 

One obvious 
q = A cos ax cos pyeYZ, which i s  

The solut ion t o  equations @3) discussed here gives the  s t r e s s  d i s t r ibu t ion  
i n  a rectangular so l id  having two opposite s ides  f r ee  of applied stress, two 
opposite s ides  constrained by workless boundary conditions, and the  remaining 
two s ides  subjected t o  some combination of applied s t r e s s .  

Solution t o  equations (l3).- The following dimensionless coordinates w i l l  
be used: 

The t e r m  v2(") i s  then given by 

8 



where it i s  fur ther  assumed tha t  

Y y q q  = -P2Y Y Z,tJ = r2Z  

Letting 
subs t i tu t ing  equations (16) . The resu l t ing  ordinary d i f f e r e n t i a l  equations 
a r e  

A2 = y2 - P2Lgy one can separate the var iables  i n  equations (13) by 

(1 + v ) f ' '  + vA2f - (g" + y2g) - (h" - P2Lzh) = 0 (18) 

where f" = (d2f/dt2).  Subtracting equations (19) and (20) gives 

g" + h2g = h" + A2h 

so 

g = h + A1 s i n  Al; + A2 cos A t  (21) 

I n  t h e  following, A1 and A 2  
l a t e r  t o  s a t i s f y  the  boundary condi t ions) .  Substi tuting equation (21) in to  
equation (19) or (20) gives f i n  t e r m s  of  h .  T h i s  r e l a t i o n  and equa- 
t i o n  (21) can be subst i tuted in to  equation (18) t o  give the following equation 
for h(5): 

are assumed t o  be zero (which would be required 

h"" + 2A2h" + A4h = 0 (22) 

Equation (22) has the  solut ion 

( 2 3 )  
-iAl; 

h(l;) = BleiAE + B2e-iAS + B3iAEeiAS + B4ihEe 

The functions f ( 6 )  and g(l;) can now be found and the  s t r e s ses  can be 
determined from equations ( 4 ) .  

9 



The desired boundary conditions of two opposite surfaces t h a t  a r e  f r e e  
of applied stress are given by: 

s i n  A = -A 

AR AI 

4.21239 2.25072 
io .7i253 3 .io314 
17.07336 3.55108 
23.39835 3.83880 
29.70811 4.09370 

Since Txy and T~~ are both zero when h ' (5)  = 0, these six conditions give 
t h e  following fou r  homogeneous equations: 

s i n  A = A 

AR AI 

7.49767 2.76867 
13.89995 3.33220 
20.23851 3.71676 
26.55454 3.98314 
32.85974 4 ~9325 

I h(0)  = 0 

h ' (0 )  = 0 

h (1 )  = 0 

h ' (1 )  = 0 

For the  B values t o  be nonzero, A must have such a value tha t  t he  determi- 
nant of t he  coef f ic ien ts  i n  equations (24) is  zero. The B values can then 
be found i n  terms of one a r b i t r a r y  constant from equations (24) and 
subst i tuted in to  equation (23) t o  give 

h(5)  = a2BoA[(1 - 5 ) s i n  A s i n  AS - AS s i n  A ( l  - E ) ]  (25) 

In  order f o r  the  determinant t o  vanish, A m u s t  s a t i s f y  one of  t he  two 
equations 

The nonzero roots  of equations (26) are complex and the  lowest f i ve  roots of 
each of equations (26) are given i n  t ab le  I (see,  a l s o ,  re f .  5). 

TABLE I.- ROOTS OF s i n  A = &A 

10 



If equation (25) i s  used, but not equations ( 2 6 ) ,  which would require the  
i: sign, t he  stresses obtained w i l l  be complex quant i t ies  given by 

(27 1 

t o  the  equi- 
librium equations, boundary conditions, e t c . ,  so  the  ac tua l  s t resses  can be 
taken as the  r e a l  pa r t s  o f  equations (27).  
notat  ion 

When equations (26) and the  

are used, t he  r e a l  s t r e s ses  are 

11 



where P l ( E ) ,  . . . (&(e) (defined under Definition of Functions) contain 
the F sign of equations (26). 

The displacements can be found by integrating the strain-displacement 
equations : 

The arbitrary functions resulting from the integration are taken to be zero to 
satisfy the shear strain-displacement equations. The dimensionless 
displacements are given by 

12 



( U l ( 5  ) , . . . , U4 ( 5 )  a r e  defined i n  the  next sect ion) .  

The functions P l ( k ) ,  . . . , U 4 ( 5 )  depend on which of equations (26) i s  
chosen and, depending on the  choice, t h e  resu l t ing  s t r e s ses  and displacements 
w i l l  have d i f f e ren t  symmetry charac te r i s t ics .  For 

s i n  A = -A: 

1 - -  
rsx,rsy,rsz,~yz,v,w a re  even about 5 = 

1 Txz,Txy,u a re  odd about 5 = - 2 
- 

Since A is  determined from one of equations (26) and the r e l a t ion  
A2 = y2 - P2L', 
and A remains a rb i t r a ry .  In  the  following, t he  parameter P and Y(9) a re  
chosen t o  s a t i s f y  boundary conditions a t  9 = 0,  1. Two obvious choices are 

must be s a t i s f i e d ,  only one of t he  three  parameters 7, P, 

Y = cos P-q P = nn , n = 0,1,2, . . . 
- 
v = rXy = T~~ = 0 a t  9 = 0,l 

and 



Y = s i n  Pq P = nn , n = 1,2, . . . 
- -  r s y - u = w = O  - a t  q = O , 1  

Since each of equations (26) contains i n f i n i t e l y  many roots  and n can 
have any integer  value, t h e  stresses and displacements can be summed t o  give, 
f o r  example, 

Two sets of a r b i t r a r y  constants a r e  avai lable  t o  satisfy boundary conditions 
on the  surface 

and would have t o  accept whatever t he  solut ion gave f o r  t he  other 
s t r e s s  applied t o  the  5 = constant surface. The functions cos Pnq are 
orthogonal so  a function can be eas i ly  represented i n  the  rj direction; but 
t he  functions 
approximate a specified stress i n  the  I; direct ion.  T o  avoid t h i s  d i f f i c u l t y  
i n  t h e  present report ,  the  numerical work i s  confined t o  single-term solutions 
given by equations (28). 

( = constant, so  one could specify two stress components on 
= to 

P,(E), e tc . ,  are not orthogonal so it could be d i f f i c u l t  t o  

Definit ion of functions.- The functions that 'comprise equations (28) and 
(29) are defined i n  t h i s  section. F i r s t ,  the  constant parameters are 

The functions t h a t  depend on t h e  choice of equations (26) a r e  

PR(E) = ~ ( 1  - E)sin ARE cosh AIE + E s i n  A R ( l  - 5)cosh AI(l - I ; )  

QI(~) = A s i n  ARE sinh A$ - sin A R ( ~  - E)sinh A I ( 1  - 5 )  



 TI(^) = +-COS ARE sinh AIS + COS A R ( ~  - 6)sinh AI(l - 5 )  

U,(E) = +(1 - E)sin ARE sinh AIS + E sin A R ( ~  - E)sinh A 1 ( 1  - E )  

where the sign corresponding to that of equations (26) must be used (i.e., 
+c-+ +A = sin A ) .  -- The functions appearing in equations (28) and (29) are 

Pl(5) = (A; - AE)pR(E) - 2AlA2PI(E) 



I!KDERICAL EXAMPLES 

The numerical evaluation of any of the  solut ions given by equations (28) 
i s  straightforward and i s  e a s i l y  car r ied  out, but only t h e  solution f o r  t he  
lowest value of A and P = 0,sr i s  presented here. The boundary conditions 
s a t i s f i e d  by the  solutions considered a re  

5 = 0,l: q = 0,l: 

- cTx - TXY = rxz = 0 v = r  q r  - - ryz = 0 

5 + ": 

16 



Since the condition of decreasing stress with increasing 
is  chosen t o  be negative. The other parameters are 

z i s  imposed, yI 

s i n  A = -A 

P = 0 , ~  ( P  = 0 corresponds t o  plane s t r a i n )  

Lo = 0.01, 0.5, 1.0 

Combinations of these parameters a r e  calculated f o r  t h e  following two cases: 

Case 1: BR # 0 ,  BI = 0 (uxl, uYl, e tc . )  

Case 2: BR = 0 ,  BI # 0 ( u ~ ,  uy2, e t c . )  

For both cases,  the  applied stresses on the  surface 
t a n t  forces  and moments tha t  can be found from the  following relat ions:  

5 = 0 can produce resul-  

where 

ti” 
Sketch (a) 

and the  notation i s  shown i n  
sketch (a) .  For the given choice of 
parameters , the  resu l tan ts  are 



, 1 1 1  ... 

For plane s t r a i n  (n  = 0 ) ,  a l l  resu l tan t  forces  and moments a r e  zero. 

The calculated stresses f o r  cases 1 and 2 are shown i n  f igures  1 through 
l2 and several  l i n e a r  cor5binations of t h e  two cases a r e  shown i n  f igures  l3(a)  
t o  (d)  and 14. 
given here,  a much c loser  examination of t he  e n t i r e  family of solut ions 
presented here would undoubtedly y ie ld  much useful  information. 

Although some discussion of t h e  l imited numerical work i s  

Discussion of Numerical Results 

Some general  comments should first be made about t he  f igures .  A l l  t he  
s t r e s ses  were calculated a t  the  points  fj = 0, 0.1, 0.2, 0.3 ,  0.4, 0.3 s o  
the  graphs a re  accurate a t  those points and the  s t r e s ses  a re  e i the r  even or 
odd extensions f o r  0.3 < 6 < 1 as indicated on the  graphs. Also, a l l  the  
graphs are independent of 7 
abscissas .  

since t h i s  coordinate i s  contained i n  the  

For case 1, the  applied s t r e s ses  are shown by the  5 = 0 curves i n  f ig-  
ures 1, 3, and 5 .  The remaining three  stress components are shown i n  
f igures  7, 9, and 11. 

For each stress component t he  same curve appl ies  f o r  P = 0 and P = fi 
when Lo = 0.01 ( T ~  = Txz = 0 as Lo + 0 o r  P = 0)  which means t h a t  t h e  
s t r e s ses  f o r  
where u i j  a r e  t he  s t r e s ses  f o r  t he  plane s t r a i n  problem given by P = 0. 
In  f ac t ,  very l i t t l e  difference is apparent up t o  
determined by the  smallness of PLo ra ther  than j u s t  Lo) .  This i s  useful 
t o  know since the  plane s t r a i n  solut ion t o  t h i s  and similar problems can be 
obtained from two-dimensional theory. 

- 
“ i j  cos Py - P = fi and Lo = 0.01 can be represented by ai j  - - 

Lo - 0.1 ( the  accuracy is  

The graphs show the  rapid decay of a l l  t h e  s t r e s s  components as f 
requires  a longer dis tance t o  reduce i t s  value t o  a increases. 

negl igible  amount because it has i t s  maximum value a t  about 
the  other components have t h e i r  maximum values a t  
tance equal t o  the  thickness a ) ,  uxl is  about 5 percent of i t s  maximum 
while the  other components a re  about 1 t o  2 percent of t h e i r  maximum value. 

However, a,, 
5 = 0.2 whereas 

f = 0. A t  f = 1 (a dis-  

A comparison of t he  curves for  Lo = 1.0 and Lo = 0.01 f o r  P = fi shows 
t h a t  the  applied s t r e s ses  a r e  s i m i l a r  i n  shape but t h e  magnitude of each com- 

have similar shapes but ayl changes both i t s  shape and magnitude. This 
ponent i s  l a rge r  f o r  Lo = 1.0. Two of t h e  remaining s t r e s ses ,  uxl and T x y l ,  
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shows t h a t  despi te  similar applied s t r e s s  d i s t r ibu t ions ,  t h e  in t e rna l  s t r e s s  
d i s t r ibu t ion  may vary considerably with t h e  thickness r a t i o .  

The applied s t resses  f o r  case 2 are shown i n  f igures  2 ,  4, and 6, and the  
remaining s t r e s ses  a r e  shown i n  f igures  8, 10, and l2. 
between the  applied s t r e s ses  of cases 1 and 2 ( f ig s .  5 and 6)  i s  the  d i s t r i -  
bution of T 

ing the  s imi l a r i t y  between the  P = 0 and P = II solutions and the  decay of 
stress with increasing 5 except fo r  t he  behavior of ox2 compared t o  t h a t  
of oxl. In  f igure  8, one sees t h a t  os has i t s  maximum value a t  5 = 0, 
and the  maximum value is  an order of magnitude l a rge r  than t h a t  of 
i s  t rue  f o r  t he  solution 
in  d i s t r ibu t ion  of T~~ does not explain the  la rge  maximum value of ox2. 
Linear combinations of cases 1 and 2 can be formed t o  give a b e t t e r  under- 
standing of what governs the  behavior of ox. Considering only t h e  solutions 
fo r  P = 0, one sees tha t  cases 1 and 2 have the  resu l tan t  forces  shown i n  
sketch ( b ) .  

The main difference 

and T ~ ~ ~ .  The same comments as f o r  case 1 can be made regard- Y= 1 

oxl. !This 
P = 0 f o r  which Tyzl = Tyz2 = 0 so  the  difference 

The shear forces are given by the area (0 < - -  < 0.5)  under the  

Case I Case 2 

Sketch (b)  

curves f o r  Txzl and T~~~ fo r  5 = 0 ( f i g s .  3 and 4 ) .  The moments are caused 
by 
moment can be varied by superposing cases 1 and 2; four examples a r e  shown in  
f igures  13(a) t o  ( h ) .  The values indicated i n  the  f igures  f o r  the  force and 
moment a r e  not precise since they were determined graphically.  In f ig-  
ures 13(a)  t o  ( c )  the  force i s  kept constant but the  moment decreases from a 
dimensionless value of  about 50 i n  f igure  l 3 (a )  t o  zero i n  f igure l 3 ( c ) .  
maximum value of ox increases approximately l i n e a r l y  as the  moment 
decreases. 
moment nonzero, so  f igures  l 3 ( c )  and (d )  show the  uncoupled e f f ec t  of a force 
or moment on the  s t r e s s  components regardless of the  value of Lo. This 
points out that  it i s  possible even i n  t h i n  p l a t e s  t o  have l a rge  transverse 
s t r e s ses  near t h e  edge of t he  p l a t e ,  but these s t resses ,  i n  agreement w i t h  
Saint Venant's pr inciple ,  a r e  contained within an edge region whose width 
about equals t he  p la te  thickness. This i s  c l ea r ly  seen i n  f igure  14 where 
ox a t  = 0.3 i s  p lo t ted  versus 5 f o r  each example given by f igures  13(a) 
t o  ( d ) .  
values within the  dis tance 

oz,  as shown i n  f igures  1 and 2. The r e l a t ive  value of t he  force and 

The 

Figure 13(d)  shows the  case fo r  which the  force i s  zero and the  

A l l  t he  s t resses  have decreased t o  s m a l l  f rac t ions  of t h e i r  maximum 
5 = 1. 
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CONCLUDING REMARKS 

The set of six fourth-order compatibility equations in terms of the three 
Maxwell stress functions has been written in the form of three second-order 
equations with arbitrary functions of integration to simplify the task of 
finding exact solutions by the inverse method. The solutions studied to date 
are for body forces and arbitrary functions of integration being zero. The 
most interesting one found is presented in the form of an infinite family of 
solutions which gives the stresses in a rectangular solid subjected to applied 
stresses on two opposite surfaces with two other opposite faces constrained 
by workless boundary conditions. 
applied stress. Numerical work is presented to show the characteristics of 
the solutions and it is worthwhile to note that the stresses are smooth func- 
tions throughout the solid which includes the edges and corners. The solu- 
tions are not general enough to satisfy an arbitrary distribution of applied 
stress. It is recommended that further study be devoted to investigating sums 
of the solutions obtained which may describe additional useful cases. 

The remaining two surfaces are free of 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field, Calif., 94035, May 29, 1967 
124-08-06-01-00-21 
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APPENDIX A 

D I S C U S S I O N  O F  COMPATIBILITY EQUATIONS 

Since the l i nea r  compatibil i ty equations govern the small deformations of 
any sol id ,  it i s  worthwile t o  see how the  relat ionships  between the  equations 
can be used without r e s t r i c t i n g  the  s t r a i n s  t o  any par t icu lar  s t r e s s - s t r a in  
law. Reference 6 shows t h a t  i f  a l l  s i x  compatibil i ty equations a re  s a t i s f i e d  
on the  boundary of a simply connected so l id ,  then sa t i s fy ing  three unrelated 
compatibil i ty equations throughout the i n t e r i o r  of the so l id  i s  suf f ic ien t  t o  
guarantee continuous displacements. In t h i s  section, conditions under which 
three compatibil i ty equations alone a re  su f f i c i en t  will be investigated.  From 
the following def ini t ions,  

d2€, a2€, a2yxz  
cp2 = =+ - - ___ ax2 ax a, 

ay +%) a2€ - 2 Y - a  
95 - ax a Z  ay ( A 5  

the  s ix  compatibil i ty equations a re  then 

cpl=o, 9 2 = 0 ,  9 3 = 0  ( A 7 )  

(p4 = 0 ,* 'ps = 0 , 96 = 0 (A8 1 
The i d e n t i t i e s  discussed in  references 1 t o  3 t h a t  i n t e r r e l a t e  equations ( A l )  
t o  ( A 6 )  a re  

I 

21 



or an a l t e rna t ive  form i s  

Since q4, (p5, and (p6 are  so c losely r e l a t ed  t o  q l J  (p2, and cp,, it seems 
possible t h a t  under ce r t a in  conditions, s t r a i n  components t ha t  s a t i s f y  three 
compatibil i ty equations w i l l  automatically s a t i s f y  the other  three equations. 
To explore th i s ,  assume tha t  the  s t r a i n  components s a t i s f y  the three 
compatibil i ty equations 

Subst i tut ing equations ( A l 5 )  i n to  equations (A9)  t o  ( A l l )  gives 

Integrat ing equations ( ~ 1 6 )  gives 

a2€, a 2 E y  a2y 
= f (x ,y)  af ax2 ax ay 

a2€, a2€, a2yxz 

91 = - + - - 

-- 
(P2 = - aZ2 + ax2 - ax aZ - &A 

Equations ( A l 7 )  show t h a t  t he  s t r a ins  which s a t i s f y  equations ( A 8 )  may not 
s a t i s f y  equations ( A 7 ) ,  bu t  the residues, a t  most, a re  the functions 
and h. Different forms of the  s t r a ins  can be studied t o  see what forms can or 
cannot contribute t o  the residue. It follows from equations ( A l 7 )  t h a t  some 
forms tha t  could contribute a re  

f ,  g, 
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In  order t o  f ind  forms t h a t  cannot contribute t o  the  residue and, therefore,  
w i l l  s a t i s f y  equations ( A 7 ) ,  consider those s t r a i n s  t h a t  can be represented by 
a power series of t he  form 

k m n  
E X =  )1 a - x y z  

u 
k,m,n=o 

k m n  
E = 1 b b x y z  

Y 
k,m,n=o 

k,m,n=o 

k m n  = - x y z  
yxY 

k ,m,n=o 

where 

k,m,n=o k=o m=o n=o 

Equations (Al) t o  (A3)  become 



-%+ 1, m+ 1, n (k+l) (m+l) ]*zn 

-Pk+i,m,n+l (k+l) (n+l) ]xky"zn 

where the  indices have been changed so  t h a t  terms of l i k e  exponents can be 
grouped. 
equations (A8), equations (Al6) a re  s a t i s f i e d  and can be wri t ten as 

Since t h e  s t r a i n s  given by equations (Alg) are assumed t o  s a t i s f y  

nz-l'plkmn = Ol 

my-1y2kmn = O i 
Equations (A21) must be s a t i s f i e d  f o r  a l l  values of x, y, and z so  tha t  

= o  
'plkmn 

= o  
'p3kmn 

k = 0,1,2, . . . ; m = 0,1,2, . . . ; n = 1,2, . . . 

k = 0,1,2, . . . ; m = 1,2,  . . . ; n = 0,1,2, . . . 

k = 1,2y ; m = 0,1,2, . . . ; n = 0,1,2, . . . 
(A=) 
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For equations (A7)  t o  be s a t i s f i e d ,  it must 

= o ,  = o  
%Dl0 ',ken 

a l so  be t r u e  t h a t  

From equations ( M O ) ,  it i s  seen t h a t  equations (A23)  can be s a t i s f i e d  by 
requiring t h a t ,  f o r  k,m,n = 0,1,2, . . ., 

Equations (A24) can be s a t i s f i e d  i f  t he  coef f ic ien ts  are combined so that  the 
sum i s  zero or by each coef f ic ien t  a,  b ,  . . ., y being zero. A n  example 
of a s t r a i n  t h a t  s a t i s f i e s  t h i s  l a t t e r  condition would be if  t he  s t r a i n  
were of the  form 

cX = A cos x sin y s i n  z 

- which has a series expansion where ak,m,o - ak,o,n = 0 .  

The conclusion t o  be drawn from t h i s  discussion is  t h a t  i f  the  s t r a i n s  
a re  chosen so t h a t  t h e i r  power series expansions e x i s t  and the  coef f ic ien ts  
s a t i s f y  equations (A24), then equations (A8)  are su f f i c i en t  t o  guarantee t h a t  
a l l  six compatibil i ty equations a r e  s a t i s f i e d .  

One could have assumed f i rs t  t h a t  the  s t r a i n s  s a t i s f i e d  equations (A7)  
and then have looked f o r  forms t h a t  would a l so  s a t i s f y  equations ( A 8 ) .  By 
the  same procedure, equations analogous t o  equations (A24) can eas i ly  be 
found; but since equations (Al2) t o  (Al4) a r e  of second order, there  a r e  s i x  
equations between the  coef f ic ien ts  a ,  b ,  . . ., y .  



APPENDIX B 

DERIVATION OF EQUATIONS 

Since some manipulation is required to write the compatibility equations 
in the form given by equations (6) and (7), it seem appropriate to show a 
detailed derivation. 

By Hookers law the strains can be found in terms of the stress functions. 
Substituting equations (4) into equations (2) gives 

- 2(1 + v )  
Y y y  - - E %XY 

The other strains are symmetric with equations (Bl) and (B2) and can be 
obtained by permutation of the coordinates. 
into the first compatibility equation given by 

The strains can be substituted 

which gives 

By definition, 
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Using equation (B5) ,  one can write equation 

Since ( a 2 / a p )  ( q2,=) = (d2/dx2) ( q2,yy), etc., these terms can be inter- 
changed to give the form, which is the first of equations (6). The next two 
compatibility equations can be obtained by permutation of the coordinates. 
The fourth equation is 

Substituting the strains gives 

Equation (B5) can be used to reduce equation (B7) to the first of equations (6) 
and the remaining equations can be obtained by permutation of the coordinates. 
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